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This commentary builds on topics Beasley briefly addressed in his response (Beasley 

2018) to Blackwell’s reply (Blackwell 2017) to an earlier comment of Beasley (Beasley, 

2017) in response to Blackwell’s essay about Corporate Corruption in the 

Psychopharmaceutical Industry (Blackwell 2016).  The primary purposes of the 

commentary are to: 

1. illustrate the sample sizes required to infer with reasonable certainty that some 

adverse medical event is caused by a drug; and 

2. illustrate the sample sizes required to infer with reasonable medical certainty that 

some adverse medical event, while possibly observed during administration of a 

drug, is not caused by the drug. 

We focus on adverse medical events that are infrequently observed in temporal 

association with the administration of a drug and are likely to be medically serious.  The 
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point that is made in illustrating these sample sizes is that for such adverse medical 

events the inference that a drug caused or did not cause the events is not based on robust 

empirical evidence.  Furthermore, obtaining such robust medical evidence would be a 

practical impossibility. 

The commentary progresses in sections as follows: 

1. A section that provides definitions of technical terms that have a precise meaning 

in the domain of drug safety/pharmacovigilance as these terms will be used in 

the commentary. 

2. An introductory section that restates our purposes and briefly describes some 

complexities of the time course of observation of an adverse medical event over 

time that is caused by a drug.  While these complexities can complicate a correct 

analysis of whether such an event is or is not caused by a drug, we address the 

simplest case in sections that follow. 

3. A section that discusses the variability that can occur when a subset of a 

population of interest is selected for inclusion in a study in terms of what would 

be observed in the total population compared to the subset.  Such variability is 

an important topic as it is relevant to an understanding of sample size 

computations.  As a special case of this variability, we discuss what can be 

inferred when no events or outcomes of interest are observed in a subset of a 

population of interest that is embodied in the statistical Rule-of-3. 

4. A section that discusses sample sizes in studies where the objective is being able 

to infer that an effect occurs under the assumption that the effect does not occur. 

5. A section that discusses sample sizes in studies where the objective is being able 

to infer that an effect does not occur under the assumption that the effect does 

not occur. 

6. A section that illustrates the extreme rarity of events that would be of interest in 

the assessment of the safety of a drug.  This section provides context for 

understanding the incidence of an event associated with a drug that is used in our 

sample size calculations. 

7. A section that discusses regulatory requirements for drug exposure (number of 

patients) in development programs for drugs used on a long-term basis in the 

treatment of disorders that are not acutely life-threatening.  This section further 

discusses what regulatory authorities acknowledge regarding the limitations of 
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such sample sizes in determining with reasonable certainty what events are 

caused by a drug before its approval. 

8. A section that briefly enumerates some of the methods used to attempt to 

determine events caused by a drug, both before and after its approval, which are 

not as robust as a study or set of studies, using appropriate controls. 

 

 

 

1. Definition of Terms Used in this Document 

 

• Adverse Event: (AE) – an adverse or untoward medical event (complaint, 

symptom, sign, syndrome, disorder, disease) that occurs or worsens in temporal 

association with a study treatment (investigational drug or control [placebo or 

active drug]) or during any period of observation without treatment in a 

randomized clinical trial (RCT).  An AE might be etiologically related to a 

treatment or an incidental observation with an etiology other than treatment. 

• Adverse Drug Reaction: (ADR) – an AE where there is “reasonable evidence” 

that the AE was etiologically related to treatment (investigational drug or control).  

To the best of our knowledge, “reasonable evidence” has never been operationally 

defined or even quantified by any regulatory entity or drug safety organization, 

including: 

o U.S. Food and Drug Administration (FDA) or other national regulatory 

agencies; 

o International Conference on Harmonization of Technical Requirements 

for Registration of Pharmaceuticals for Human Use (ICH – a group of 

major worldwide drug regulatory agencies and pharmaceutical 

manufacturers’ associations);  

o Council for International Organizations of Medical Sciences (CIOMS – a 

nongovernmental organization set up by WHO and UNESCO that works 

with ICH to establish standards and methods of evaluating drug safety. 

“Reasonable evidence” might be the medical equivalent of the legal standard of 

“preponderance of evidence” that is quantitatively well defined (>50%).  

However, it might be some quantity ≤50%.  ADRs are identified based on the 

totality of relevant available data.  The most robust data are provided by placebo-
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controlled RCTs and meta-analyses of multiple such RCTs.  But, prospective and 

retrospective epidemiological studies, post-marketing surveillance and multiple 

other sources of data contribute to sponsors’ and regulatory bodies’ decisions 

about what AEs are ADRs and should be identified as such in product labeling.  

Even if “reasonable evidence” was quantitatively well-defined, the judgment of 

the magnitude of the totality of data and analyses relevant to whether an AE is or 

is not an ADR would remain a subjective opinion, at least for “uncommon” AEs 

(see definition below).  In some cases, an ADR can be attributed to a drug 

treatment (or the potential for a specific ADR is considered a strong possibility) 

in product labeling even if the AE has not been observed with that drug treatment 

(e.g., all dopamine antagonist antipsychotics are potentially associated with the 

ADR of neuroleptic malignant syndrome [NMS]).  The potential for this ADR 

will appear in product labeling, in the Warnings and Precautions Section of a US 

label for all drugs in this class.  If NMS had not been observed at the time of 

approval, the Warnings and Precautions text related to NMS is likely to include 

that caveat.  Pharmacological class effect (a supposition rather than an empirical 

finding) is the basis for believing that there is “reasonable evidence” that a 

dopamine antagonist causes or contributes to the development of NMS.   

• Incidence categories of ADRs (and AEs observed in a clinical trial): 

o Very common: ≥ 1/10, 10%, 0.1000 

o Common (frequent): ≥1/100, 1%, 0.0100 to <1/10, 10%, 0.1000 

o Uncommon (infrequent): ≥1/1,000, 0.1%, 0.0010 to <1/100, 1%, 0.0100 

o Rare: ≥1/10,000, 0.01%, 0.0001 to <1/1,000, 0.1%, 0.0010 

o Very rare: <1/10,000, 0.01%, 0.0001 

• “Proof” of a drug effect (and proof of absence of a specific effect): The 

standard of proof for a binary categorical outcome (in our case of interest the 

occurrence of an AE that might be an ADR) is based on a difference in incidences 

or a ratio of incidences observed in well designed, prospective, RCTs (or meta-

analysis of multiple RCTs).  If the difference or ratio, analyzed with proper 

statistical methods, is significant (p≤0.05), the results are interpreted as ‘proof’ of 

an effect.  For “proof”’ of efficacy the regulatory standard, at least that of FDA 

for potential drugs intended to treat non-life-threatening disorders, is generally 

two RCTs with inferential results of p≤0.05.  If statistical significance is 

overwhelming in a single trial (e.g., p<0.001 in the single trial/analysis and/or the 
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trial could be randomly split into two trials/analyses multiple times, and analyses 

of the split samples would consistently result in p<0.05) one trial might be 

sufficient. 

 

 

 

2. Introductory comments 
 

 For several years, Charles Beasley has had an interest in what RCTs that support 

approval of a potential new treatment tell us, with a robust degree of scientific certainty 

(“prove” – see Part 1), about possible ADRs associated with treatment and what possible 

ADRs are not associated with treatment?  Current designs and practical limitations on the 

size and length of time over which an RCT can be conducted influence what an RCT can 

“prove.”  With what incidences must an AE occur in association with an investigational 

treatment and control treatment to “prove” that the AE is an ADR for the investigational 

treatment under consideration?  What size would studies need to be conducted to “prove” 

that a rare AE is an ADR? The sample size requirements for deciding what distinguishes 

ADRs from among AEs and “proving” either the presence or absence of any given 

potential ADR is the essence of what we are discussing. 

 The hypothetical case on which we focus is that of a highly uncommon ADR with 

an incidence of 1 per 1,000 persons treated (0.001 or 0.1%), the low boundary of 

“uncommon” events.  If the incidence is 1 in 1,001 subjects, the event would be “rare.”  

However, just because such an ADR is highly uncommon, this does not mean that it will 

not be experienced by a considerable number of individuals during the commercial life 

of a widely prescribed drug for disorders common in the general population.  As Beasley 

said in his earlier response to Blackwell (2018), if some 20,000,000 individuals are treated 

with a drug (and that number might be higher by several multiples), the ADR with an 

incidence of 1 per 1,000 would occur in 20,000 persons.  The successful drug will become 

generic and more people would be treated with more persons experiencing the ADR. 

The majority of what we say below about complexities deals with simple incidence 

(events/person) for the 0.1% of individuals who experience the hypothetical ADR.  

However, the distribution of time to experience the ADR can have a substantial impact 

on the extent to which a specific study design, sample size, and analysis can influence the 

“proof” of the presence or absence of an ADR.  Even rare ADRs, with enough individuals 
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treated, might show three patterns of distribution of time to occurrence (temporal patterns 

of occurrence):  

1) early in treatment (acute toxicity) – a curve of the cumulative incidence over time 

would rise rapidly and then taper off (sigmoidal / Gompertz function pattern);  

2) later in treatment – with increasing incidence in later epochs of time (delayed 

toxicity with increasing exposure [can be due to drug exposure accumulation or 

a lag between acute exposure that is toxic and the manifestation of the toxicity, 

e.g., myocardial infarction and ischemic stroke due to acceleration of 

atherosclerosis]) – a curve of the cumulative incidence over time would reflect an 

initial linear rise followed by exponential rise after some lag time; and  

3) random occurrence with equal distribution across time of treatment – a curve of 

the cumulative incidence over time would be linear with a slope dependent on 

incidence during the period of observation.  

The rate of occurrence (event/person-time [e.g., number of ADRs / 100-patient-years 

of treatment]) and the temporal pattern of occurrence are two of the multiple factors that 

complicate “proving” the presence or absence of an ADR.  These two related factors 

would be important considerations in discussing limitations of attempts at such “proof.”  

In Installments 4 and 5 we discuss sample sizes required for “proving” that an observed 

AE is or is not an ADR.  These sample sizes for “proving” that an AE is an ADR apply 

best to temporal pattern of occurrence #1 above (especially if there is a short lag time 

between initiation of treatment and first occurrence of the ADR) for the AE of interest.  

An ADR with temporal pattern of occurrence of #2 above would generally result in the 

requirement for longer periods of observation (a longer RCT) than temporal pattern #1 

and therefore require additional subjects to begin a definitive RCT in order to account 

for subjects discontinuing the RCT/observation prior to the planned end of observation 

and the more frequent occurrence of the ADR.  A relative infrequent or rare ADR, 

occurring with temporal pattern #3 would also require a longer period of observation in 

a definitive RCT.  Therefore, the sample sizes discussed in Installment 4 that focus on 

“proving” that an AE is an ADR should be considered conservative estimates for ADRs 

that would only be observed late in treatment, with an accelerating rate of occurrence 

after some relatively lengthy period of observation or in a random pattern over time but 

very infrequently overall.  Additionally, any pattern of occurrence that is a change as a 

function of time might require special statistical techniques (beyond comparing 

incidences or assessing the ratio of incidences) to “prove” presence or absence of the 
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ADR.  Therefore, RCTs required to address the complexity of changes in the rate of 

occurrence of an ADR over time are likely to require larger numbers of subjects 

beginning such an RCT (because human subjects discontinue participation).  There is 

one final caveat regarding patterns over time:  as events become rarer, they generally 

appear to be randomly distributed over time, and there are never a sufficient number of 

cases observed to discern a temporal pattern within RCTs of practical size, even if a 

pattern exists.  Rare AE occurrences, of which the majority are ADR occurrences,  will 

generally appear with temporal pattern #3 unless sufficiently large number of subjects 

are observed to discern temporal pattern #2 when that is the pattern of occurrence. 

 

 

 

3. lack of occurrence of an AE in an RCT (Rule-of-3) and impact 

on sample size calculations  
 

An RCT or set of RCTs samples only a subset of the entire population of interest 

as subjects.  Interpretations of the results of RCTs are then extrapolated to the entire 

population of interest and this is the very essence of clinical research.  Even with the use 

of the best methods of random allocation of subjects to the treatments in an RCT, the 

observations in the RCT (within treatments and between treatment differences) can 

differ from what would be observed if the entire population of interest was studied in 

the RCT.  The statistical “Rule-of-3” (Eypasch 1995; Hanley 1983) addresses the 

potential difference between what is not observed in a subset sample compared to what 

would be observed if the entire population of interest (or another subset) was to be 

studied in an RCT.   

 The following is a simple example of the sampling problem and the “Rule-of-3”: 

 

 Let us say that we are interested in the entire human population and that the truth 

is that drug X does cause some ADR “Bad-Thing” in 1 in 1,000 persons (and nothing else 

but drug X causes the AE “Bad-Thing” that in this case is an ADR – background 

incidence of 0%).  As of December 2017, the world’s population was estimated at 7.6 

billion.  If we could somehow study that entire 7.6 billion sample for a sufficient period 

to observe all occurrences of the ADR, we would observe 7.6 million cases of the AE 

“Bad-Thing,” with all these cases being ADRs.  However, if we were to study only 1,000 

subjects and we sampled the entire population perfectly, we would observe one case of 
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this ADR.  However, if we sample only 1,000 subjects, we are highly likely to obtain a 

sample where the incidence of the ADR differs from the incidence in the entire 

population.  While we might observe more than one case of this ADR, we are more likely 

to observe no cases of this ADR.  The “Rule-of-3” addresses the lack of observation of 

an outcome.  

  The “Rule-of-3” has two variants relevant to this discussion: 

• Precise interpretation:  If we study 1,000 subjects and do not observe a single case 

of AE “Bad-Thing,” we can conclude with 95% probability that the true incidence 

of AE “Bad-Thing” is only <1/334 subjects (AE might or might not be an ADR).  

The incidence of AE “Bad-Thing” has a 95% probability of being between 0/1000 

and 1/333, where 333 is the approximate upper bound of the 95% confidence 

interval (CI) when 0 events have been observed in 1,000 observations. 

• Extrapolation:  We are studying only a subset of the population of interest and our 

sample might have an incidence of the ADR that differs from the incidence in the 

entire population.  Therefore, we would need to study at least 3,000 subjects to 

have a 95% probability of observing even 1 case of the ADR “Bad-Thing” with a 

true incidence of 1 in 1,000 (with no cause of the AE other than it being an ADR). 

 

 This estimation only applies to cases of 0 observations (Ludbrook 2009) and the 

simple calculation of the upper bound of the CI is only valid with a relatively substantial 

number of observations (e.g., ≥100) (Jovanovic 1997). 

 Note that the two variants of the “Rule-of-3” only address not observing a single 

case of AE “Bad-Thing” and not “proof” of presence or absence of “Bad-Thing” as an 

ADR. 

 The potential difference in what is observed in a subset of the whole population 

of interest that is studied compared to what would be observed if the whole population of 

interest was studied, is important in understanding the results of sample size computation 

that Beasley provided in his response to Blackwell (2018).  Sample size computations 

consider the potential for what is observed (in this case the incidence of an AE) in the 

sample selected for an experiment to deviate from what would be observed if the entire 

population of interest was included in the experiment.  The result of this adjustment for 

potential variation between the experimental subset and the entire population is that the 

sample size for any given power greater than ~50% power will result in p-values <0.05 

If the experimenter was: 
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1) lucky enough to select a subset for which what is observed is equal to what would 

be observed in the entire population of interest (or greater than the incidence in 

the entire population); 

2) lucky enough to guess the incidences that would be observed; 

3) used these incidences in sample size calculations.   

 In other words, smaller sizes than those obtained with an 80% or 90% power 

sample size computation will be sufficient to “prove” that an AE is an ADR if one is 

lucky in guessing the observed outcome incidences and using these in the sample size 

calculations.  However, one might not get lucky with sampling and miss “proving” that 

an AE is an ADR without a sample size that provides 80+% power even if one is lucky 

in guessing incidences in the entire population.  

 

 

 

 

4. “Proof” of the presence of an ADR (significant excess compared 

to control): sample size requirements 
 

 

As we have said, such “proof” is generally based on an inferential statistical test.  

If our interest is in proving presence, a conventional inferential test with the null 

hypothesis of no difference between groups is used and we conclude that a difference 

exists between groups if the null hypothesis is rejected at the α≤0.05 level in a 2-sided 

test. 

We have gone back to Beasley’s primary example (incidence of 1 in 1,000 with 

drug and no occurrence without drug) from his response to Blackwell and computed the 

sample sizes for 51% power employing PASS 15.0.6 software (Beasley 2018; PASS 

2017). We then performed the conventional inferential test (Fisher’s Exact, 2-sided) 

employing NCSS 12.0.5 software (NCSS 20181).  The results illustrate the point that one 

might get lucky and “prove” an ADR with fewer subjects than the number of subjects 

necessitated by any power ≥51% (see Table 1 below2).  

The sample size below for 80% power is somewhat lower than Beasley reported 

in response to Blackwell because for this work we used the binomial enumeration method 

of computation, rather than a normal approximation method of computation, for sample 

sizes up to 100,000 (Blackwell 2018).  Binomial enumeration computation provides exact 

results but requires long runtime (some sample size computations required six days 
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performed on an Intel i7-6700K CPU @ 4.00GHz with 32 GB RAM system).  As can be 

seen, ~6,000 (~51% power) subjects per treatment group are sufficient to get a result of 

nominal statistical significance with perfect sampling, but 5,000 is insufficient when the 

true incidences are 1 in 1,000 with drug and 0 in an infinity of subjects with placebo.  

 

Table 1:  Demonstration of p-Value with Sample Sizes based on Two Prospective 
Power Requirements with Study Outcome as Prospectively Estimated 
 

Fisher’s Exact Test, 2-sided (α=0.05) 

Sample Size Computation  
(binomial enumeration) 

Inferential Test Results with ~51% Power 

Event 
Incidence 

(with 
drug) 

Sample Size 
/ Treatment 

(80% 
Power) 

Sample Size 
/ Treatment  
(51% 
Power) 

Events 
with 

Treatment 

Events 
with 

Placebo 

Sample 
Sizes 
Used 

p-Value 

1:1,000 
 

7,905 
 

5,730 
 

6 0 6,000 0.0312 

5 0 5,000 0.0624 
  

The sample size of 7,905 per treatment group required to obtain 80% power with a 2-

sided Fisher’s Exact Test is lower than the sample size of 9,742 previously reported by 

Beasley in his response to Blackwell (2018).  However, a sample size of 7,905 per 

treatment group is still a large sample size and a practical impossibility in RCTs 

evaluating psychiatric medications.  This sample size with placebo, not added on to 

another treatment, as control would be particularly difficult. 

The discussion of the sample size resulting in 51% power and how that sample size is 

adequate to achieve conventional statistical significance with precise estimation of what 

will be observed in an RCT and the sample sizes computed with binomial enumeration 

offer full transparency building on Beasley’s response (2018).  However, for any 

hypothesis that is being explicitly tested in an RCT, the power is generally 80% and might 

be higher if a particularly important hypothesis is being investigated.  Also, it is not 

common to compute sample sizes using binomial enumeration because of the time 

required if the sample size is expected to be large. 

Fisher’s Exact Test is the classical inferential test applied to “proving” a difference 

with small incidences being compared.  While huge drug and control (placebo) sample 

sizes (about 5,000 – 10,000 subjects) for each treatment might be obtained in some 

development programs (not for a psychiatric drug, but for a cardiovascular [CV] or 

diabetes drug), that number of subjects exposed generally would not be obtained in a 

single RCT but in multiple RCTs.  The results from the multiple RCTs would be 
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combined in a meta-analysis.  A proper meta-analysis would consider differences across 

the RCTs and differences in study size to compute the inferential statistical result.  A 

proper meta-analysis, therefore, generally requires an increased subject number for any 

given power relative to the number of subjects required in a single, prospective, large 

RCT.  For simplicity, however, the computations above and those below will be for a 

single RCT. 

Also, as pointed out by Beasley (2018), there is almost always some background 

incidence of any AE of interest.  Required sample sizes become even larger because of 

such background incidence in inferential tests intended to “prove” difference (null 

hypothesis of no difference).  Beasley provided the example of an event with a 0.5% 

background incidence (i.e., an incidence of 0.5%3 would be observed in the control group 

and the drug group due to causes other than drug) with an additional 0.1% (0.5% vs. 

0.6%) observed in the drug group due to drug causation / contribution.  In this scenario, 

sample size per treatment grows to 87,851 for 80% power with a 2-sided Fisher’s Exact 

Test, when computed with normal approximation. 

A 2-sided Fisher’s Exact Test (testing a ratio of incidences) is not the only inferential 

test that can be applied to proportions (incidences) in two groups being compared.  The 

incidence difference (incidence with drug - incidence with placebo) can be tested.  This 

alternative to testing the ratio is important when dealing with small incidences.  When 

dealing with single digit incidences expressed as percentages, the difference between a 

difference and a ratio can be striking.  The difference between an incidence of 1% and 

2%, expressed as a percent is 1% (2 - 1), while the ratio, expressed as a percent is 200% 

(2 / 1), and the excess incidence, expressed as a percent of the lower incidence is 100% 

([2 - 1] / 1).  The results of inferential tests based on differences versus ratios can be 

different and sample size computations for a given power can result in different sample 

sizes.  As observed incidences (used in inferential tests) and hypothesized incidences 

(used in sample size computations) decrease, these differences in computational results 

can become more important.  Additionally, because with low incidence AEs, inferential 

analyses are most often conducted using multiple RCTs where it is likely that the AE of 

interest will not be observed (0 incidence) in one of the treatment arms being compared, 

and in some of the RCTs in none of the treatment arms.  Both cases complicate the use of 

such a study in the meta-analysis using the ratio of incidences.  If an RCT has a 0 

incidence in one or more arms being compared but also has one or more arms with >0 

incidence, a small incidence needed to be added where the actual incidence is 0 to use the 
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RCT in the meta-analysis when analyzing the ratio of proportions.  When the AE of 

interest is observed in none of the treatment arms being compared, the entire RCT is 

excluded from the meta-analysis.  In such a case, significant amounts of meaningful data 

are then disregarded. If the difference in incidences is used for analysis, both difficulties 

can be avoided, and all actual data can be used.  Techniques are evolving that improve on 

these meta-analyses of rare events of interest (Tian, Cai, Pfeffer et al.  2009).   In the 

assessment of safety with psychiatric drugs, this problem was highlighted by the analysis 

of suicidal behaviors and completed suicides in the original study of this potential ADR 

in the fluoxetine depression database (Beasley, Ball and Nilson 2007; Beasley, Dornseif, 

Bossomworth et al. 1991).  However, it is very uncommon for regulators to focus on 

analyses based on incidence differences and we do not include computations for sample 

sizes for analyses of incidence differences below. 

With a long-term, large study, survival analysis can be used.  While a simple Logrank 

Test is often used for survival data, a Cox Proportional Hazards Model with an analysis 

of the Hazard Ratio would often, if not most commonly, be employed with survival data.  

Also, the Cox Proportional Hazards approach is generally used for AEs when performing 

a noninferiority analysis “proving” absence of an effect (i.e., the absence of an ADR) as 

is described in more detail in a section below.   

Table 2 below shows sample sizes for a classical inferential test (null hypothesis: no 

difference – “proving” that an AE is an ADR if the null hypothesis is rejected) using 

Fisher’s Exact Test and a Cox Proportional Hazards Model analysis for the 51%, 80%, 

90%, and 95% power.  In all cases, α=0.05, there is an equal allocation of total subjects 

to two groups (test drug, control [placebo or active “known” to not have ADR of interest 

– incidence due to control approaching 0]).  The following were additional specifications 

for each procedure: 

• Fisher’s Exact Test: 

o Test drug observed incidence: 0.001 (1.0x10-3, 1 in 1,000, 0.01%) 

o Control observed incidence: 1.0x10-15 (cannot set to 0.0 for sample size 

computation) 

o Computation by binomial enumeration (where computed sample size for 

both treatment groups ≤100,000, otherwise normal approximation used) 

o Addition of 0.0001 (PASS authors’ recommendation) to 0 cells only 
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o No adjustment for subjects discontinuing early – assume all subjects 

observed through sufficient time to observe the “adverse event” of 

interest if it would occur 

• Cox Proportional Hazards Model 

o Test drug probability of an event: 0.001 

o Control probability of an event: 0.00005 (5 per 1,000,000, 0.005%, 

5.0x10-5; hazard ratio of 20 – minimum control probability of event / 

maximum hazard ratio that allowed for PASS computation with at least 1 

event observed in the treatment group4) 

▪ 51% power: estimated 0.08 events with control and 1.67 with the 

test drug 

▪ 80% power: estimated 0.17 events with control and 3.33 with the 

test drug 

▪ 90% power: estimated 0.22 events with control and 4.46 with the 

test drug 

▪ 95% power: estimated 0.28 events with control and 5.52 with the 

test drug 

 

Table 2:  Sample Sizes Required for Assessing a Hypothesis that Drug Does Have an 
Effect (Null Hypothesis of No Effect) 

 

Power Fisher’s Exact Test 
(binomial enumeration) 

Cox Proportional Hazards 
Model 

51% 5,730 1,673 

80% 7,905 3,332 

90% 9,273 4,461 

95% 10,511 5,517 

 
The Cox Proportional Hazards Model analysis sample sizes are the best cases 

(lowest number of subjects) for each power because the calculation does not consider 

early discontinuation (censoring) from the planned period of observation.  The software 

does not allow for the inclusion of a censoring rate for the treatments and in the actual 

study, the censoring rates can differ between treatments.  Furthermore, the software 

assumes sufficient time of observation (length of RCT) to observe 100% of the incidence 

of events for the two treatments that are reflected in the probabilities of an event for each 

treatment.  Early discontinuations will occur, especially for RCTs that have lengths that 

extend for multiple years.  More realistic sample sizes for the Cox Proportional Hazards 
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Model analysis can be computed by reducing the expected observed hazard ratio.  For 

example, with a power of 80% and a hazard ratio of only 10, the sample size for each 

treatment group increases to 5,640 from 3,332 and for a hazard ratio of 15, still grows to 

4,078. 

Sample sizes are smaller with a Cox Proportional Hazards Model analysis.  

However, with either of these inferential test methods, required sample sizes are large.  If 

multiple studies are used in a meta-analysis (generally required for assessment of a very 

uncommon AE), total sample size increases.  For assessment of a very uncommon AE of 

a clinically significant nature, power >80% would be desirable.  Large numbers of 

subjects treated only with placebo (a component of the gold standard control treatment 

for determination of a treatment effect) is a particularly challenging problem. 

Additionally, these computations are for a single study.  As noted above, at least 

for an assertion of efficacy, at least two independent findings that reject the null 

hypothesis of no difference and lead to an interpretation of a drug effect are required to 

“prove” efficacy for drugs intended to treat non-life-threatening conditions unless there 

is overwhelming evidence of efficacy in a single RCT.  From a rigorous scientific 

perspective, this replication requirement is an excellent, conservative requirement 

protecting against a Type 1 error in a single RCT.  From our perspective, the assertion 

that any AE is an ADR with robust scientific rigor would require the same level of 

evidence as required for an efficacy assertion.  We are not suggesting that labeling of 

ADRs should require the same degree of “proof” as required for an efficacy claim but are 

describing the nature of the evidence for the assertion of an ADR compared to that for the 

assertion of efficacy for a given indication.   

We believe that clinicians, patients and all other parties should understand the 

quality of “proof” that any given AE listed as an ADR in lay literature, scientific/clinical 

reviews and product labeling is an ADR.  Additionally, these parties should have a clear 

understanding of the approximate incidence with which an ADR must occur for the 

“proof” that the AE is an ADR to be comparable to the standard of “proof” for efficacy. 

So, to “prove” a hypothesis (that a drug causes a rare “adverse drug reaction”) one 

needs large numbers of subjects.  The sample in the table above (Table 2) for 80% power 

(a conventional power in high-quality efficacy studies) is 7,905 per treatment group with 

Fisher’s Exact Test (the most conventional analytical method).  However, if an important 

outcome were being studied, even greater statistical power would be desirable. 
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5. “Proof” of the absence of an ADR (noninferiority compared to 

control): sample size requirements 
 

We have addressed in Part 4 the difficulties in “proving” that an infrequent or rare 

AE is an ADR by the standards applied to “proving” efficacy.  We now turn to the matter 

of “proving” that an AE is not an ADR and the related matter of correctly interpreting 

RCT results that fail to reject the null hypothesis of no difference.  The correct 

interpretation of an RCT where a null hypothesis of no difference was not rejected is 

essential for the interpretation of both efficacy results and AE observations. 

If our interest is in proving absence, a noninferiority inferential test (Mauri and 

D’Agostino 2017)1  with the null hypothesis of some difference between groups is used 

and we conclude that no difference exists between groups if that null hypothesis is 

rejected at the α≤0.05 (≤0.025 in some cases) level (Mauri and D’Agostino (2017)    There 

is a very important difference between the conventional inferential test of a difference 

and the noninferiority inferential test.  In the conventional test, there is no necessity to 

define a meaningful difference (except in determining sample sizes).  However, in the 

noninferiority inferential test, it is necessary to define a difference between treatments 

that will be considered “no difference” (not clinically meaningful).  This difference 

cannot be set to “0” because sample sizes would then need to be infinity.  In noninferiority 

tests, some slight difference must be considered acceptable and one can never completely 

exclude (statistically) some slight excess with test drug versus the comparator. 

We are concerned that some interpret failing to “prove” (failing to reject the null 

hypothesis of no difference) an effect as equivalent to “proving” absence of an effect, 

especially if the study intended to “prove” presence of an effect is well powered (e.g., 

~90%).  However, this is not the correct interpretation of a p>0.05 statistical test result 

even if the RCT used sample sizes that provided ≥90% prospective power.  We would 

acknowledge that if the power of the study was ≥95%, then failure to reject the null 

hypothesis might offer some evidence of lack of difference (i.e., lack of difference 

associated with 95% associated with 95% power).  This approximate interpretation of an 

RCT with a null hypothesis of no difference and an outcome of the analysis with p>0.05 

applies only to a prospective outcome of interest (e.g., a specific efficacy measurement) 

where the sample size was prospectively determined based on a 95% power.  This 

approximate interpretation would not be appropriate for multiple outcomes (e.g., the 
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multiple AEs observed in an RCT) where there was no prospective determination of 

sample size based on 95% power. 

However, the correct, formal interpretation of an RCT outcome described in the 

paragraph above is simply that the RCT failed, not the absence of effect.  The design and 

prospective Statistical Analysis Plan (SAP) for an RCT must test for noninferiority to 

control to allow for correct, formal interpretation of results as indicating lack of effect, 

irrespective of sample size.  The RCT could be accompanied with a complex SAP that 

would allow for sequential testing of multiple and alternative hypotheses (such as first 

testing a null hypothesis of no difference [potentially “proving” an effect] followed by 

the testing of a null hypothesis of a difference [potentially “proving” lack of an effect]).  

The SAP could include adjustment of α for the multiple testing without rejection of the 

null hypothesis in the first test in the sequence.  Such SAPs would allow simultaneous 

tests for both an effect and lack of effect.     

To “prove” absence of an effect one designs a noninferiority (to placebo) study 

and as noted above one must declare some non-0 excess with drug, usually expressed as 

a ratio of incidences in the case of binary outcomes for individual subjects such as AEs 

(or “response” for efficacy) as clinical equivalence.  The excess incidence with the drug 

could be expressed as a difference rather than a ratio and the observed difference rather 

than the observed ratio tested but, in the concrete, required study example described 

below, the ratio of incidences is tested.  For a clinically important potential ADR (with 

our incidence of 1 in 1,000), one might think that the ratio might be set at 1.10 (maximum 

of 10% excess with the drug) or even 1.05 (5% excess with the drug).  However, there is 

precedent (discussed below) for an excess incidence with the drug of any magnitude 

<30%, based on the 95% CI for the observed ratio, above the incidence observed in the 

control group and still declare noninferiority for the drug.  With any magnitude of excess 

<30% as the maximum estimated from the CI, the actual observed excess incidence with 

drug in the study will be less than 30% because the upper bound of the 1-sided (in some 

cases of such a study possibly a 2-sided) 95% CI1 around the ratio of incidences cannot 

be ≥ 1.3 for drug:control.  In many, if not most cases, the observed ratio with drug to 

placebo will be less <1 for the upper bound on that CI to be <1.3.  Furthermore, in some 

cases with that ratio of 1.3, the drug will be not only non-inferior to control, but also 

superior first potential outcome in a noninferiority trial - real examples provided below) 

(Mauri’s and D’Agostino 2017). 
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This analytical requirement is mandated for hypoglycemic agents for the 

treatment of diabetes mellitus and is codified in an FDA Guidance to Industry (CDER 

2008).  Sponsors developing such drugs must “prove” that a drug candidate does not cause 

serious cardiovascular outcomes that would most likely all be due to accelerated 

development of atherosclerosis, grouped under the acronym MACE (Major Adverse 

Cardiac Events).  There are multiple definitions of MACE, but the events always included 

are: 1) all cardiovascular AEs with an outcome of death (sometimes includes all outcomes 

of death when the cause cannot be determined); 2) myocardial infarction; and 3) stroke 

(ischemic or ischemic and hemorrhagic and sometimes including TIA).  Hospitalization 

for unstable angina, hospitalization for heart failure (or acute heart failure) and 

revascularization and stent placement procedures might be included.   

This requirement, established in 2008, grew out of what Beasley believes was a 

flawed analysis of data for the PPAR drug rosiglitazone, conducted by the cardiologist 

Steven Nissen (Nissen 2007).  Beasley thinks the analysis was flawed for two reasons.  

First, the data source was study summaries that reported incidences of “Serious Adverse 

Events” (SAEs) (AEs that are fatal, acutely life-threatening, result in or prolong 

hospitalization [inpatient], result in permanent disability, are congenital anomalies, are 

cancer, are deemed by the reporting investigator or sponsor to be serious for any other 

reason) on the sponsor’s website disclosing results of studies.  These SAEs were 

described with a term (a label from a regulatory dictionary [MedDRA] used for reporting 

AEs that can be a sign, symptom, syndrome or specific diagnosis).  Unfortunately, SAE 

reports sometimes inaccurately characterize the AEs and/or provide an incorrect 

term/label for a given AE.  These SAE reports are not necessarily subjected to scrutiny 

by a blinded, expert review committee to decide the correct term/label for an AE.  What 

was reported by an investigator, required to report such an event within 24-hours if fatal 

or life-threatening and otherwise within seven days of learning of the AE, will sometimes 

not be what would have been concluded by a review committee reviewing all available 

medical records following all diagnostic and therapeutic activities in association with AE.  

Therefore, the data that were used by Nissen were not necessarily accurate data.  Second, 

events were very infrequent and were not reported in some treatment groups in the 

multiple studies used by Nissen.  Furthermore, in some studies considered for use, the 

SAEs of interest were not reported in any treatment arm.  Nissen used a ratio of incidences 

(proportions) for his analysis rather than the difference in incidences.  The meta-analytic 

technique that he used at the time to compare incidences was such that not all studies 
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could be used (those with no event of interest in any treatment group [10 of 48 reported 

no myocardial infarction and 25 of 48 reported no death from cardiovascular causes, the 

two outcomes analyzed separately]).  Additionally, because of the technique used, when 

a study had an event or events of interest in one but not another treatment group used in 

the comparison, a small incidence needs to be added to the treatment group with actual 0 

incidence, as described above.  From an analytical method perspective, using the 

difference in incidences, briefly mentioned above, rather than the ratio of incidences 

(odds ratio) would have at least allowed use of data from all 48 available studies where 0 

incidence is highly informative and would have been a preferable method.  

The method developed by Tian et al for meta-analysis was used by the authors to 

reanalyze the dataset used by Nissan (Tian, Cai, Pfeffer et al 2009).  For neither the CV 

mortality endpoint nor the myocardial infarction endpoint were the results statistically 

significant.  For CV death, the risk difference was 0.063% (95%CI: -0.13%-0.23%; 

p=0.83).  For myocardial infarction, the risk difference was 0.183% (95%CI: -0.08%-

0.38%; p=0.27).  

This study requirement has placed a significant cost and time burden on 

companies developing treatments for diabetes, discouraging development, and its need 

has been questioned by multiple academic groups based on experience with several such 

analyses results (Hirsberg and Katz 2013; Regier, Venkat and Clo 2016; Smith, Goldfine 

and Hiatt 2016; Yang, Stewart, Ye and DeMets 2015).  In counterpoint, at least one author 

has recently espoused the position that the studies that evaluate MACE events as an 

outcome are insufficient to assess the potential for contributing to heart failure (although 

congestive heart failure is sometimes included in the analyses of MACE events), 

arrhythmia and microvascular disease with its multiple adverse clinical consequences 

(Packer 2018).  As a patient with Type II diabetes, Beasley is personally very distressed 

by this obstacle to innovation that also drives up the cost for those new drugs that are 

developed.   

Irrespective of the wisdom of the regulatory requirement for this study of MACE 

outcomes for potential new non-insulin anti-diabetic therapies, the study outline 

establishes the model for “proving” that a drug does not cause a specific group of ADRs.  

The group of ADRs that might or might not have common underlying pathophysiology 

in the case of MACE events (e.g., an ischemic cerebral infarction is vastly different 

compared to a subarachnoid hemorrhage from a pathophysiological perspective). 
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Table 3 below displays the sample sizes for demonstration of noninferiority of test 

drug to control (“proof” of absence of effect – null hypothesis is that an effect does occur 

with the proportion observed with test drug of ≥1.3-fold the proportion observed with 

control when the proportion observed with control is 1 in 1,000 [0.001, 1x10-3]).  While 

noninferiority is conceptually a 1-sided test and a 1-sided 95% CI might be used in the 

inferential test when testing the ratio of incidences, a 2-sided confidence interval is often 

used as effectively testing at a p-value (α) of ≤0.025 for noninferiority.   For assessment 

of noninferiority of AEs (“proof” that an AE is not an ADR), the Cox Proportional 

Hazards Model is customarily employed. 

 

Table 3:  Sample Sizes Required for Assessing a Hypothesis that Drug Does Not 

Have an Effect (Null Hypothesis of An Effect with an Observed Ratio ≥ the Ratio 

Considered to be Clinically Equivalent to No Effect) 

Power Cox Proportional Hazards Model 

 1-sided 

(α=0.025) 

1-sided (α=0.05) 

51% 114,487 81,024 

80% 228,049 179,634 

90% 305,294 248,823 

95% 377,561 314,439 

 

Two published manuscripts provide examples of noninferiority (to placebo) RCTs 

evaluating MACE events with subsequent testing for superiority (Neal, Perkovic and 

Mahaffey 2017; Zinman, Wanner, Lachin et al. 2015).  These RCTs demonstrated 

noninferiority.  Also, the SAPs for the RCTs were written in such a way that allowed 

testing for superiority after a result that would be interpreted as indicative of 

noninferiority.  Both manuscripts reported results of meta-analyses.  The empagliflozin 

manuscript employed a hierarchical-testing approach in the order of: noninferiority for 

the primary outcome (MACE: death from CV events, nonfatal myocardial infarction 

excluding silent myocardial infarction or nonfatal stroke), noninferiority for the key 

secondary outcome (the primary outcome plus hospitalization for unstable angina), 

superiority for the primary outcome and superiority for the key secondary outcome 

(Zinman, Wanner, Lachin et al. 2015).  A Cox Proportional Hazards Model was used for 



20 
 

 

analyses.  A 2-sided p-value (for analysis of superiority) was adjusted to ≤0.0498 as 

indicative of statistical significance because the data had been submitted to the FDA in a 

New Drug Application.  Noninferiority was declared if the upper bound of the 2-sided 

95.02% CI was <1.3, resulting in a p-value for the noninferiority analyses of 0.0249 

(comparable adjustment as with the superiority analyses).  Therefore, superiority was 

declared if noninferiority was declared: the upper bound on the 2-sided 95.02% CI for the 

hazard ratio was <1.0 and the p-value was ≤0.0498.  Because a Cox Proportional Hazards 

Model was used for analysis, the sample size was determined based on the assumption of 

a hazard ratio of 1.0.  A power of 90%, required 6911  events to occur (rather than subjects 

studied) based on the assumed hazard ratio and level of statistical significance required.  

Thus, 4,687 subjects were included who began empagliflozin and 2,333 subjects were 

included who began placebo.  The analysis included 48 months of treatment observation.  

For the primary outcome, the hazard ratio was 0.86 (95% CI: 0.74 – 0.99).  For 

noninferiority, the p-value was <0.001 and for superiority was 0.04. 

The canagliflozin manuscript also reported the results of a meta-analysis (Neal, 

Perkovic and Matthews 2017).  Statistical analyses were comparable to those used in the 

empagliflozin manuscript but there was no adjustment of required p-values (Zinman, 

Wanner, Lachin et al. 2015).  The sample size required for 90% power was determined 

to be 6881 events.  Hierarchical testing was used in the following order: MACE (deaths 

from CV events, nonfatal myocardial infarction, nonfatal stroke); death from any cause; 

death from CV events; the progression of albinuria; and death from CV events plus 

hospitalization for heart failure.  The manuscript does not specify where in the hierarchy 

superiority for any of the outcomes noted above was tested.  There were 5,795 subjects 

included who began canagliflozin and 4,347 included who began placebo.  The analysis 

included 338 weeks (~80 months) of treatment observation.  For the primary outcome, 

the hazard ratio was 0.86 (2-sided 95% CI: 0.7 – 0.97).  For noninferiority, the p-value 

was <0.001 and for superiority was 0.02. 

In both drug development programs an event of interest adjudication committee, 

blinded to treatment, reviewed all records pertinent to each event (AE) to make a final 

determination of what each reported event represented (term/label).  The need for all 

records and methods to acquire these records would have been put in place prospectively 

before each RCT initiation.  These steps were taken to maximize data quality used in the 

respective analyses. 
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In the empagliflozin analyses, there were 43.9 MACE events per 1,000 subject-

years with placebo and 37.4 MACE events per 1,000 subject-years with empagliflozin 

(Zinman, Wanner, Lachin et al. 2015).  The comparable rates in the canagliflozin analyses 

were 31.5 with placebo and 26.9 with canagliflozin per 1,000 subject-years. 

The two real-world examples above emphasize the magnitude of effort and 

therefore expense required to “prove” absence of a specific set of events in a population 

with an increased risk of such events (Zinman, Wanner, Lachin et al. 2015).  The subject 

population, therefore, would be expected to have an increased background incidence of 

MACE events.  However, presumably, there would also be a markedly increased risk of 

the events in the drug-treated group if the drug caused or contributed to the MACE events 

as ADRs.   

Product labeling is not intended to describe explicitly those adverse events that 

have been demonstrated with reasonable certainty not to be ADRs.  Instead, those sections 

of product labeling that address the safety of the treatment to which the labeling is 

applicable are intended to identify for the prescriber, and other interested parties, AEs 

that have been identified as ADRs with reasonable medical certainty.  Therefore, the 

information above regarding sample sizes for noninferiority studies that might “prove” 

the absence of a specific ADR is of little relevance to the primary task of 

pharmacovigilance/drug safety monitoring and the development of product labeling.  

These noninferiority study sample sizes demonstrate the limitations on the robustness of 

what we know about what a drug does not do from a safety perspective based on the 

highest quality of evidence for medical decision-making.  

While demonstrating noninferiority for an ADR is not critical to the primary intent 

of safety labeling, it can be critical to a sponsor attempting to “prove” that some AE that 

has been described as an ADR by some party is not an ADR for that given drug. 

We should be cautious regarding what we believe about what a drug does and 

does not do from a safety perspective and fully understand the robustness of the 

supportive data for such attributions. 

 

Endnotes 

 

i. The authors describe five possible interpretations (Figure 1) of the results of a 

noninferiority analysis of an RCT.  While all five are potential interpretations, 

from a conservative analytical design perspective, a primary, single null 



22 
 

 

hypothesis would be tested (i.e., superiority of the control over drug treatment). 

Failure to reject the null hypothesis would not permit any additional 

interpretation to be made without prespecifying some sequential order of testing 

other hypotheses and/or paying a “statistical penalty” for simultaneous testing 

of multiple hypothesis, including noninferiority and superiority and the 

paradoxical but possible interpretation of both noninferiority and inferiority 

simultaneously. 

ii. We are aware of at least three studies required by FDA for potential drugs 

seeking regulatory requirements that are noninferiority studies comparing test 

drug to placebo.  The so-called Thorough QT Study (required for virtually all 

potential drugs) compares the mean change from baseline in QTc.  The Human 

Abuse Potential (HAP) Study (required for drugs with CNS activity that are 

perceived by FDA as having any abuse potential based on pharmacological 

action) compares mean absolute values (integers with a range of 100).  Both 

studies’ analyses employ a 1-sided 95% CI (FDA Guidance does not explicitly 

state use of a 1-sided CI for the TQT study analysis, but this is the commonly 

used CI).  The boundary of a 1-sided 95% CI is equivalent to the upper bound 

of a 2-sided 90% CI and therefore is a lesser value.  If a 1-sided 95% CI is used 

and the null hypothesis is rejected, the p-value is ≤0.05 while if a 2-sided 95% 

CI is used, the p-value is 0.025 and define the precision of the estimate because 

both an upper and lower bound are defined.  The Major Adverse Cardiac Events 

Study ([MACE study] required for non-insulin drugs used to treat diabetes) 

compares the incidence of a set of AEs based on the ratio of incidences.  The 

FDA Guidance Document that outlines this study and its analysis specifies the 

use of a 2-sided 95% CI.  The major distinctions between the TQT study and 

the HAP study contrasted with the MACE study is that the TQT and HAP 

studies compare means of integer values and the differences used as not 

clinically meaningful have explicit empirical bases (TQT: Malik, 2001; HAP: 

Chen and Bonson 2013) while the MACE study is comparing proportions and 

there is less explicit empirical basis for the noninferiority with the MACE study.  

The FDA Guidance Document that specifies the margin cited reviews of two 

long-term studies of intensive vs. standard diabetes therapy (UKPDS, 1998a; 

UKPDS, 1998b) that reported CIs for multiple adverse cardiovascular outcomes 

in drafting its Guidance. 
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iii. PASS computes the total number of events for 90% power as 688 with a 2:1 

assignment of number of subjects to drug:placebo (drug: 4579; placebo: 2290), 

and with p=0.0249. 

iv. PASS computes the total number of events for 90% as 687 with a 2:1 

assignment of number of subjects to drug:placebo (drug: 4579; placebo: 2290) 

and as 623 with a 1.5:1 assignment of number of subjects to drug:placebo (drug: 

6869; placebo: 4579) that approximate the actual ratio in the meta-analysis, with 

p=0.025. 

 

 

6. Incidences of AEs of real-world interest and limitations on 

“proof” of presence or absence of an ADR 
 

How relevant to clinical reality and what would be relevant to both prescribers and 

patients who might suffer a major (i.e., life-threatening or fatal) ADR is our hypothetical 

example of an ADR that occurs with an incidence of 1 in 1,000 persons treated but 

virtually never happens in an untreated population.  Aplastic anemia and the spectrum of 

Stevens-Johnson Syndrome (SJS) - toxic epidermal necrolysis (TEN) afford a context for 

considering the relevance of our example. 

A major, international study of both agranulocytosis and aplastic anemia has been 

conducted under the sponsorship of the WHO.  The first report described rates of 

occurrence for aplastic anemia ranging across seven sites from 0.6 to 3.1 (adjusted mean: 

2.2) per million-person-years (International Agranulocytosis and Aplastic Anemia Study 

1987).  A more recent report of this study reported a range of rates of cases from 0.7 to 

4.1 per million-person-years (Kaufman, Kelly, Issaragrisil et al. 2006).  For aplastic 

anemia, about 25-40% of cases are considered due to exogenous exposures (drugs, toxic 

substances) or other external factors and the majority are believed to be idiopathic and 

have no identifiable etiology (Kaufman, Kelly, Issaragrisil et al. 2006).  Therefore, with 

aplastic anemia, the incidence on an annual basis (~2-3 / million) is much lower than the 

1 in 1,000 in our example.  Furthermore, some background incidence of aplastic anemia 

would be expected due to idiopathic factors and exposures to substances other than test 

drug and thus would further increase sample sizes required to “prove” causation by a 

drug.   
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Stevens-Johnson Syndrome and toxic epidermal necrolysis are the extreme 

manifestation of the continuum of the clinical diagnoses of erythema multiforme (EM) – 

SJS – TEN; all share some characteristic histopathological feature of epidermal necrolysis 

(there is some disagreement in grouping erythema multiforme as a separate clinical entity 

or as part of the spectrum).  A large UK epidemiological study reported the rate for 

combined SJS-TEN as 5.6 (95% CI: 5.31-6.30) per million-person-years (Frey, Jossi, 

Bodmer et al. 2017)).  A separate, large national epidemiological study in South Korea 

reported rates for SJS of 3.96-5.03 per million person-years (range for individual years 

across four years) and rates for TEN ranging from 0.94-1.45 per million person-years 

(Kang, Ko, Kim et al. 2015).  The UK and Korean results are comparable for rates of 

combined SJS and TEN.  The incidence of SJS – TEN is then in the range of ~6.5 per 

million-person years.  In contrast to aplastic anemia, because SJS – TEN is primarily due 

to exogenous exposure, background rates could approach 0 if a study could be conducted 

where study subjects receiving the active investigational drug received no other 

medications and control subjects receiving placebo received no drugs.  Of course, this 

would be a highly impractical study design, especially given the enormous number of 

subjects required for definitive assessment  

While “proving” by conventional statistical standards that a test drug does or does not 

cause a specific ADR with an incidence of 1 in 1,000 patients treated and when the 

background incidence (incidence in a placebo- or active-control group) approaches 0 is 

difficult, that difficulty will grow by orders of magnitude with aplastic anemia and SJS – 

TEN. 

Definitive “proof” that a drug is associated with an ADR or that a drug is not 

associated with some specific ADR of interest is virtually impossible given the practical 

limitations impacting the conduct of human RCTs when the incidence of an associated 

ADR is less than some 2-3% when active treatment and placebo control sample sizes are 

below several hundred subjects per treatment group.  For psychiatric disorders, such 

sample sizes or even larger sample sizes would be common with depression and anxiety 

disorders.  Active treatment and placebo control sample sizes can be smaller with 

psychotic disorders.  For example, with the development program for olanzapine for its 

initial indication of treatment of psychosis (later restricted to schizophrenia) the total 

sample sizes that allowed direct comparison with placebo were:  olanzapine – 248; 

placebo – 118.  Additionally, these totals were obtained in two separate RCTs.  One RCT 
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compared placebo to olanzapine 5±2.5 mg / d, 10±2.5 mg / d, and 15±2.5 mg / d.  The 

other RCT compared placebo to 1 mg / d and 10 mg / d. 

Development programs in other therapeutic areas can be of much greater size.  

Development programs in diabetes and cardiovascular diseases can easily exceed 5,000 

and approach 10,000 subjects treated with the investigational drug.  However, 

complicating the matter of definitive “proof” of presence or absence of an ADR, these 

studies are generally conducted as drug compared to placebo as an add-on to existing 

therapies.  Therefore, while placebo-controlled, the ongoing treatment (or treatments) 

with associated ADRs can complicate definitive interpretation of safety observations. 

 

 

 

7. Regulatory requirements for investigational treatment exposure in 

development programs and their implications for ‘proof’ of presence 

or absence of an ADR 

 

To what extent are regulatory authorities aware of the limitations?  In its 1995 

Guidance to Industry addressing the “Extent of Population Exposure to Assess Clinical 

Safety: For Drugs Intended for Long-term Treatment of Non-Life-Threatening 

Conditions” (CDER 1995) exposures of 1,500 subjects to one or more doses (in intended 

multiple dose, clinical studies, generally not including single-dose, Phase 1 studies), 300-

600 subjects for at least six months and at least 100 subjects for at least 12 months were 

specified (Center for Drug Evaluation Research 1995). 

Multiple factors (e.g., a preclinical finding that would suggest rare potential 

toxicity) for individual potential drugs could result in the need for a greater number of 

exposures in the clinical development program studies.   

These requirements were in line with The International Council for Harmonisation 

of Technical Requirements for Pharmaceuticals for Human Use (ICH) 

recommendations/requirements and apply to a wide range of potential drugs across a 

variety of disorders.  For some disorders the potential drug can be tested against placebo 

while in many disorders the potential drug can only be tested as an add-on to single, 

standard therapy with a comparison to placebo added on to that therapy.  With all the 

potential study variants to which these exposure requirements apply and all the 

differences in background incidences of events in the general population, the population 
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with the disorder under study and the standard treatment when an add-on study must be 

conducted, it would be difficult to make precise statements about the incidence of ADRs 

that could be definitively ascertained and ruled out.  However, the Guidance (CDER 

1995) offers the following suggestions on what these exposure requirements will and will 

not be able to detect (Center for Drug Evaluation Research 1995). 

 

“It is expected that short-term event rates (cumulative 3-month incidence of about 

1%) will be well characterized.” 

 

“The safety evaluation during clinical development is not expected to characterize 

rare adverse events, for example, those occurring in less than 1 in 1000 patients.” 

 

The phrase “well characterize” is not expressly defined.  It would seem to us to 

convey more than simply observing an AE that might be an ADR in the treatment 

population but in many cases falls short of a difference in incidence from that incidence 

with control that reaches conventional statistical significance in a proper inferential test.  

There is likely to be some reasonable estimate of the incidence of the AE that combines 

AEs due to the background with those that are ADRs with a reasonable degree of 

difference in incidences to believe to believe that the AE can be an ADR.  

 

In a later Guidance Document addressing “Premarketing Risk Assessment” 

(CDER 2005), the following is included: 

 

“Even large clinical development programs cannot reasonably be expected to 

identify all risks associated with a product.  Therefore, it is expected that, even for 

a product that is rigorously tested preapproval, some risks will become apparent 

only after approval, when the product is used in tens of thousands or even millions 

of patients in the general population.  Although no preapproval database can 

possibly be sized to detect all safety issues that might occur with the product once 

marketed in the full population, the large and more comprehensive the 

preapproval database, the more likely it is that serious adverse events will be 

detected during development” (Center for Drug Evaluation Research 2005). 
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Presumably, the reference to “adverse events” in the last sentence is to AEs that 

are ADRs.  The statement above focuses on identifying ADRs but is equally applicable 

to the determination of the lack of a specific ADR associated with the drug under 

development.  Here we have tried to quantitate these difficulties and limitations in RCTs, 

the gold standard for such determinations. 

 

 

8. Practical alternatives to “proof” of presence or absence of an ADR : 

the need for best assessment possible as  quickly as possible of the AE / 

ADR  profile of a marketed drug.  

  
 Statisticians and data scientists, both academic and regulatory, have developed 

and are continuing to refine methods for working with data from sources other than RCTs.  

These sources include retrospective and prospective epidemiological studies (especially 

retrospective studies employing “big data” from evolving large databases possible with 

electronic medical records), large simple studies including those without a control group, 

and spontaneous adverse event reporting databases maintained by regulatory agencies 

where precise knowledge of total persons treated is not available but can be estimated, 

among other data sources.  It can be hoped that these methods result in the reduction in 

failure to find true ADRs and reduce false attribution of an ADR to a drug.  These methods 

are the ones that generally result in the discovery of very “infrequent,” “rare” and “very 

rare” ADRs associated with a given treatment.  However, these methods are more subject 

to error than those methods used to evaluate efficacy and lack of efficacy.  All interested 

parties should keep in mind the nature of the analyses that lead to the attribution of all but 

“common” ADRs to a given drug and the potential uncertainty of such attribution.  Also, 

all interested parties should clearly understand the virtual impossibility of “proving” by a 

conventional gold standard what is or is not an ADR associated with a drug. 

 It cannot be emphasized enough that for AEs that might or might not be ADRs 

but of low incidence, it can be impossible to “prove” that a drug is or is not associated 

with the potential ADR based on the RCTs that are conducted to prove that the drug is 

efficacious.  Probably the best that we can do in the future is to develop stronger 

prospective epidemiological studies that are initiated soon after a drug is launched.  By 

stronger, we mean studies with exceptionally large numbers of subjects, extended 
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exposure time frames and rigorous prospective methods for identifying with clinical 

certainty AEs of interest.  An important and interesting question is: What entity would 

fund such studies?  They would be expensive.  Advances in data sciences might make 

such studies more practical and reduce their costs.  Such studies are our best chance of 

ruling in or ruling out a rare but important potential ADR in a faster time frame with a 

lower probability of false positive and false negative attribution. 
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